

11 The line l has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The points A and B have position vectors $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively.

(a) Find a unit vector in the direction of l .

[2]

The line m passes through the points A and B .

(b) Find a vector equation for m .

[2]

(c) Determine whether lines l and m are parallel, intersect or are skew. [5]

8 Relative to the origin O , the points A , B and D have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k} \quad \text{and} \quad \overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}.$$

A fourth point C is such that $ABCD$ is a parallelogram.

(a) Find the position vector of C and verify that the parallelogram is not a rhombus.

[5]

(b) Find angle BAD , giving your answer in degrees.

[3]

(c) Find the area of the parallelogram correct to 3 significant figures.

[2]

9 Two lines l and m have equations $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + s(4\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ and $\mathbf{r} = \mathbf{i} - \mathbf{j} - 2\mathbf{k} + t(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ respectively.

(a) Show that l and m are perpendicular.

[2]

(b) Show that l and m intersect and state the position vector of the point of intersection.

[5]

(c) Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$. [4]

6 Relative to the origin O , the points A , B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

(a) Using a scalar product, find the cosine of angle BAC .

[4]

(b) Hence find the area of triangle ABC . Give your answer in a simplified exact form. [4]

11 The points A and B have position vectors $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. The line l has equation $\mathbf{r} = \mathbf{i} - \mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})$.

(a) Show that l does not intersect the line passing through A and B .

[5]

(b) Find the position vector of the foot of the perpendicular from A to l .

[4]

10 With respect to the origin O , the points A , B , C and D have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 5 \\ -6 \\ 11 \end{pmatrix}.$$

(a) Find the obtuse angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} .

[3]

The line l passes through the points A and B .

(b) Find a vector equation for the line l .

[2]

(c) Find the position vector of the point of intersection of the line l and the line passing through C and D . [4]

9 With respect to the origin O , the point A has position vector given by $\overrightarrow{OA} = \mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$. The line l has vector equation $\mathbf{r} = 4\mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.

(a) Find in degrees the acute angle between the directions of OA and l . [3]

(b) Find the position vector of the foot of the perpendicular from A to l . [4]

(c) Hence find the position vector of the reflection of A in l . [2]

10 The points A and B have position vectors $2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ respectively. The line l has vector equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \mu(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k})$.

(a) Find a vector equation for the line through A and B .

[3]

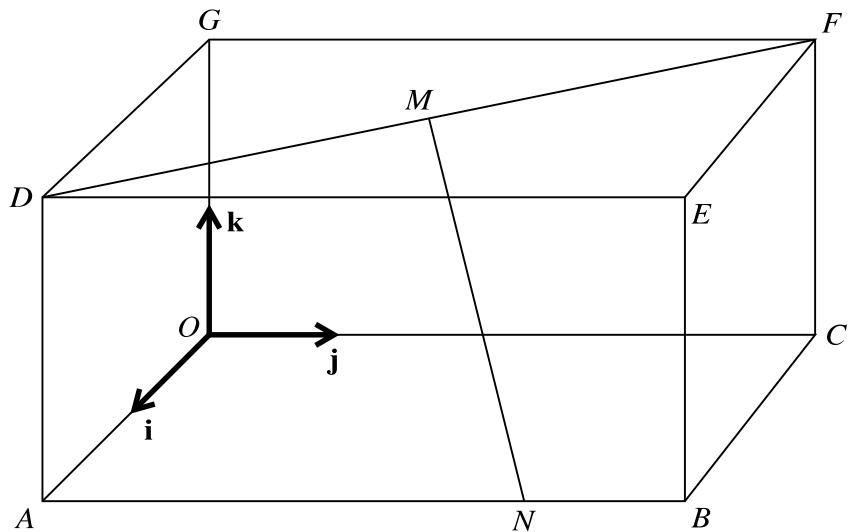
(b) Find the acute angle between the directions of AB and l , giving your answer in degrees.

[3]

(c) Show that the line through A and B does not intersect the line l .

[4]

9



In the diagram, $OABCDEFG$ is a cuboid in which $OA = 2$ units, $OC = 4$ units and $OG = 2$ units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA , OC and OG respectively. The point M is the midpoint of DF . The point N on AB is such that $AN = 3NB$.

(a) Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} . [3]

(b) Find a vector equation for the line through M and N . [2]

(c) Show that the length of the perpendicular from O to the line through M and N is $\sqrt{\frac{53}{6}}$. [4]

9 The lines l and m have equations

$$l: \mathbf{r} = a\mathbf{i} + 3\mathbf{j} + b\mathbf{k} + \lambda(c\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}),$$

$$m: \mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}).$$

Relative to the origin O , the position vector of the point P is $4\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$.

(a) Given that l is perpendicular to m and that P lies on l , find the values of the constants a , b and c . [4]

(b) The perpendicular from P meets line m at Q . The point R lies on PQ extended, with $PQ : QR = 2 : 3$.

Find the position vector of R .

[6]

9 The quadrilateral $ABCD$ is a trapezium in which AB and DC are parallel. With respect to the origin O , the position vectors of A , B and C are given by $\overrightarrow{OA} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{OB} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 2\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$.

(a) Given that $\vec{DC} = 3\vec{AB}$, find the position vector of D .

[3]

(b) State a vector equation for the line through A and B .

[1]

(c) Find the distance between the parallel sides and hence find the area of the trapezium. [5]

10 With respect to the origin O , the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

(a) Find a vector equation for the line l through A and B .

[3]

(b) The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.

Find the position vector of C .

[2]

(c) Find the possible position vectors of the point P on l such that $OP = \sqrt{14}$. [5]

11 With respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j}$ and $\overrightarrow{OB} = \mathbf{j} - 2\mathbf{k}$.

(a) Show that $OA = OB$ and use a scalar product to calculate angle AOB in degrees. [4]

The midpoint of AB is M . The point P on the line through O and M is such that $PA : OA = \sqrt{7} : 1$.

(b) Find the possible position vectors of P . [6]

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a constant.

(a) Given that the two lines intersect, find the value of a and the position vector of the point of intersection. [5]

(b) Given instead that the acute angle between the directions of the two lines is $\cos^{-1}\left(\frac{1}{6}\right)$, find the two possible values of a . [6]