

6 The parametric equations of a curve are

$$x = \sqrt{t} + 3, \quad y = \ln t,$$

for $t > 0$.

(a) Obtain a simplified expression for $\frac{dy}{dx}$ in terms of t . [3]

(b) Hence find the exact coordinates of the point on the curve at which the gradient of the normal is -2 . [3]

3 The parametric equations of a curve are

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$

for $0 < \theta < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot \theta$.

[5]

4 The parametric equations of a curve are

$$x = 1 - \cos \theta, \quad y = \cos \theta - \frac{1}{4} \cos 2\theta.$$

Show that $\frac{dy}{dx} = -2 \sin^2\left(\frac{1}{2}\theta\right)$.

[5]

4 The parametric equations of a curve are

$$x = 2t - \tan t, \quad y = \ln(\sin 2t),$$

for $0 < t < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot t$.

[5]

4 The parametric equations of a curve are

$$x = \frac{\cos \theta}{2 - \sin \theta}, \quad y = \theta + 2 \cos \theta.$$

Show that $\frac{dy}{dx} = (2 - \sin \theta)^2$.

[5]

2 The parametric equations of a curve are

$$x = (\ln t)^2, \quad y = e^{2-t^2},$$

for $t > 0$.

Find the gradient of the curve at the point where $t = e$, simplifying your answer.

[4]

3 The parametric equations of a curve are

$$x = t + \ln(t + 2), \quad y = (t - 1)e^{-2t},$$

where $t > -2$.

(a) Express $\frac{dy}{dx}$ in terms of t , simplifying your answer.

[5]

(b) Find the exact y -coordinate of the stationary point of the curve.

[2]

6 The parametric equations of a curve are $x = \frac{1}{\cos t}$, $y = \ln \tan t$, where $0 < t < \frac{1}{2}\pi$.

(a) Show that $\frac{dy}{dx} = \frac{\cos t}{\sin^2 t}$. [5]

(b) Find the equation of the tangent to the curve at the point where $y = 0$. [3]

5 The parametric equations of a curve are

$$x = t e^{2t}, \quad y = t^2 + t + 3.$$

(a) Show that $\frac{dy}{dx} = e^{-2t}$. [3]

(b) Hence show that the normal to the curve, where $t = -1$, passes through the point $\left(0, 3 - \frac{1}{e^4}\right)$. [3]

6 The parametric equations of a curve are

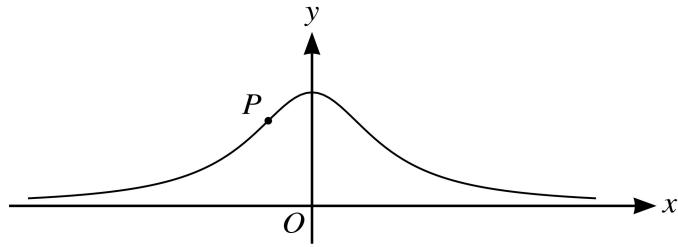
$$x = \ln(2 + 3t), \quad y = \frac{t}{2 + 3t}.$$

(a) Show that the gradient of the curve is always positive.

[5]

(b) Find the equation of the tangent to the curve at the point where it intersects the y-axis. [3]

5



The diagram shows the curve with parametric equations

$$x = \tan \theta, \quad y = \cos^2 \theta,$$

for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

(a) Show that the gradient of the curve at the point with parameter θ is $-2 \sin \theta \cos^3 \theta$. [3]

The gradient of the curve has its maximum value at the point P .

(b) Find the exact value of the x -coordinate of P .

[4]