

1 (a) Sketch the graph of $y = |4x - 2|$. [1]

(b) Solve the inequality $1 + 3x < |4x - 2|$. [4]

1 (a) Sketch the graph of $y = |x - 2|$. [1]

(b) Solve the inequality $|x - 2| < 3x - 4$. [3]

1 (a) Sketch the graph of $y = |2x + 1|$. [1]

(b) Solve the inequality $3x + 5 < |2x + 1|$. [3]

2 (a) Sketch the graph of $y = |2x - 3|$. [1]

(b) Solve the inequality $|2x - 3| < 3x + 2$. [3]

2 (a) Sketch the graph of $y = |2x + 3|$. [1]

(b) Solve the inequality $3x + 8 > |2x + 3|$. [3]

1 Solve the inequality $|5x - 3| < 2|3x - 7|$. [4]

1 Solve the inequality $|2x - 1| < 3|x + 1|$. [4]

1 Solve the inequality $|2x - 1| > 3|x + 2|$. [4]

1 Solve the inequality $2|3x - 1| < |x + 1|$. [4]

1 Solve the inequality $|2x + 3| > 3|x + 2|$. [4]

1 Solve the inequality $2 - 5x > 2|x - 3|$. [4]

2 Solve the inequality $|3x - a| > 2|x + 2a|$, where a is a positive constant. [4]

1 Find, in terms of a , the set of values of x satisfying the inequality

$$2|3x + a| < |2x + 3a|,$$

where a is a positive constant.

[4]

1 Find the set of values of x satisfying the inequality $|2^{x+1} - 2| < 0.5$, giving your answer to 3 significant figures. [4]

1 Solve the equation $4|5^x - 1| = 5^x$, giving your answers correct to 3 decimal places. [4]