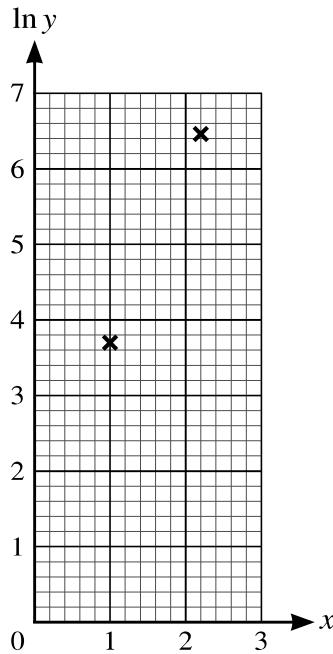


3 The variables x and y satisfy the relation $2^y = 3^{1-2x}$.

(a) By taking logarithms, show that the graph of y against x is a straight line. State the exact value of the gradient of this line. [3]

(b) Find the exact x -coordinate of the point of intersection of this line with the line $y = 3x$. Give your answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. [2]

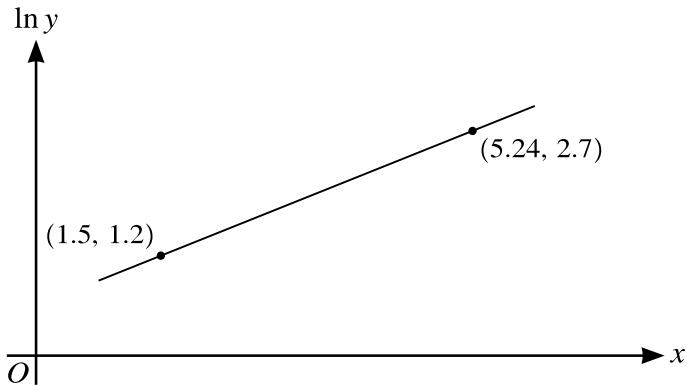

3 The variables x and y satisfy the equation $x = A(3^{-y})$, where A is a constant.

(a) Explain why the graph of y against $\ln x$ is a straight line and state the exact value of the gradient of the line. [3]

It is given that the line intersects the y-axis at the point where $y = 1.3$.

(b) Calculate the value of A , giving your answer correct to 2 decimal places. [2]

3

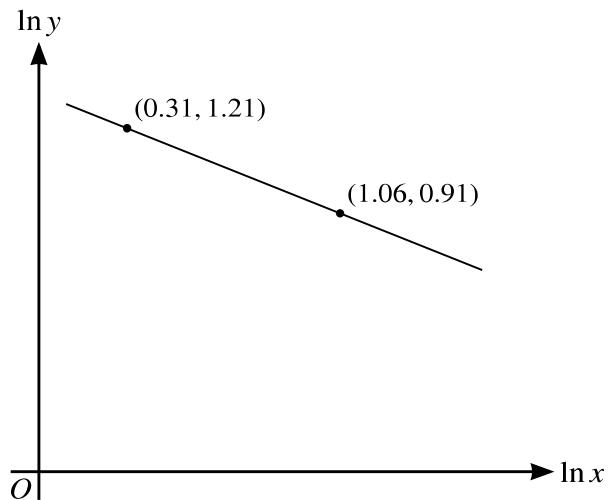


The variables x and y are related by the equation $y = ab^x$, where a and b are constants. The diagram shows the result of plotting $\ln y$ against x for two pairs of values of x and y . The coordinates of these points are $(1, 3.7)$ and $(2.2, 6.46)$.

Use this information to find the values of a and b .

[4]

2



The variables x and y satisfy the equation $y^2 = Ae^{kx}$, where A and k are constants. The graph of $\ln y$ against x is a straight line passing through the points $(1.5, 1.2)$ and $(5.24, 2.7)$ as shown in the diagram.

Find the values of A and k correct to 2 decimal places.

[5]

3

The variables x and y satisfy the equation $x^n y^2 = C$, where n and C are constants. The graph of $\ln y$ against $\ln x$ is a straight line passing through the points $(0.31, 1.21)$ and $(1.06, 0.91)$, as shown in the diagram.

Find the value of n and find the value of C correct to 2 decimal places.

[5]