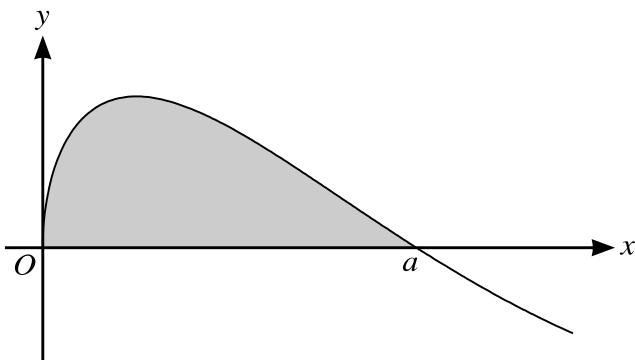


8



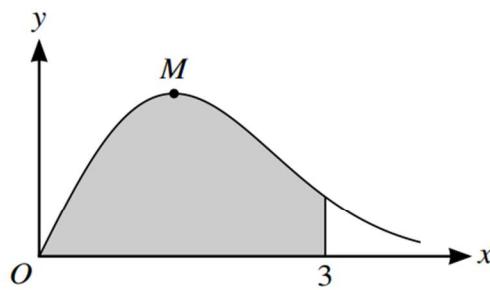
The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the x -axis at the point where $x = a$.

(a) State the exact value of a .

[1]

.....
.....
.....

(b) Using the substitution $u = \sqrt{x}$, find the exact area of the shaded region in the first quadrant bounded by this part of the curve and the x -axis. [7]



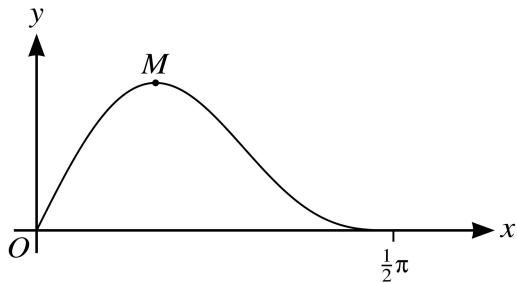
The diagram shows the curve $y = xe^{-\frac{1}{4}x^2}$, for $x \geq 0$, and its maximum point M .

(b) Using the substitution $x = \sqrt{u}$, or otherwise, find by integration the exact area of the shaded region bounded by the curve, the x -axis and the line $x = 3$. [5]

9 Let $f(x) = \frac{1}{(9-x)\sqrt{x}}$.

(b) Using the substitution $u = \sqrt{x}$, show that $\int_0^4 f(x) \, dx = \frac{1}{3} \ln 5$. [6]

10



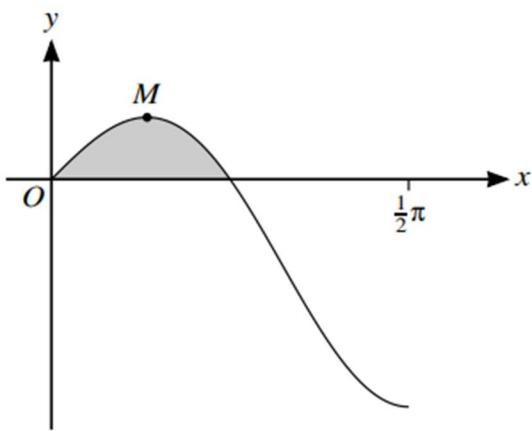
The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \leq x \leq \frac{1}{2}\pi$, and its maximum point M .

(a) Using the substitution $u = \sin x$, find the exact area of the region bounded by the curve and the x -axis. [5]

7 (a) Use the substitution $u = \cos x$ to show that

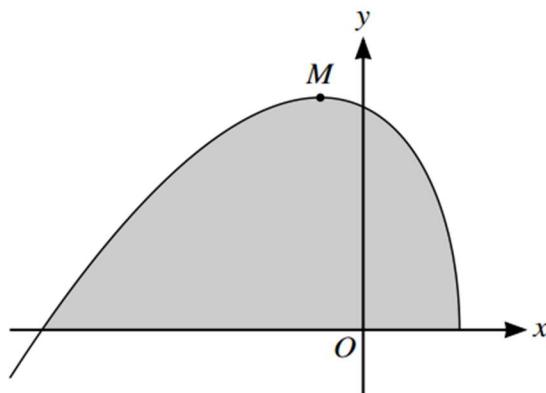
$$\int_0^\pi \sin 2x e^{2 \cos x} dx = \int_{-1}^1 2ue^{2u} du. \quad [4]$$

(b) Hence find the exact value of $\int_0^\pi \sin 2x e^{2 \cos x} dx$. [4]



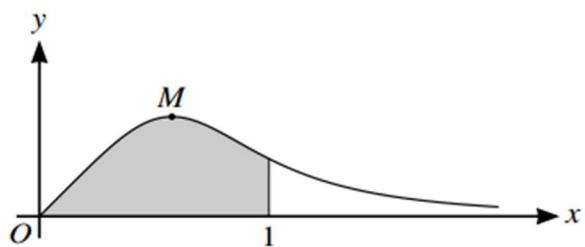
The diagram shows the curve $y = \sin x \cos 2x$ for $0 \leq x \leq \frac{1}{2}\pi$, and its maximum point M .

(b) Using the substitution $u = \cos x$, find the area of the shaded region enclosed by the curve and the x -axis in the first quadrant, giving your answer in a simplified exact form. [5]



The diagram shows the curve $y = (x + 5)\sqrt{3 - 2x}$ and its maximum point M .

(b) Using the substitution $u = 3 - 2x$, find by integration the area of the shaded region bounded by the curve and the x -axis. Give your answer in the form $a\sqrt{13}$, where a is a rational number. [5]



The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \geq 0$, and its maximum point M .

(b) Using the substitution $u = \sqrt{3}x^2$, find by integration the exact area of the shaded region bounded by the curve, the x -axis and the line $x = 1$. [5]

6 Let $I = \int_0^3 \frac{27}{(9+x^2)^2} dx$.

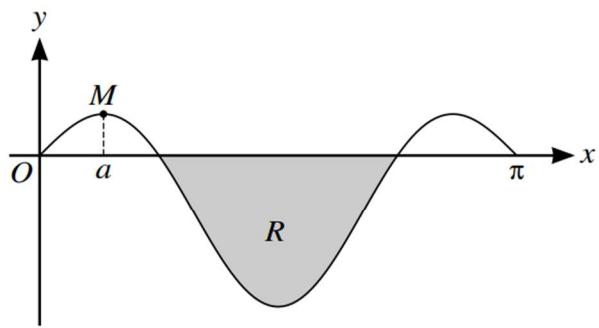
(a) Using the substitution $x = 3 \tan \theta$, show that $I = \int_0^{\frac{1}{4}\pi} \cos^2 \theta \, d\theta$.

(b) Hence find the exact value of I .

[4]

4 Using the substitution $u = \sqrt{x}$, find the exact value of

$$\int_3^\infty \frac{1}{(x+1)\sqrt{x}} dx. \quad [6]$$



The diagram shows the curve $y = \sin x \cos 2x$, for $0 \leq x \leq \pi$, and a maximum point M , where $x = a$. The shaded region between the curve and the x -axis is denoted by R .

(b) Find the exact area of the region R , giving your answer in simplified form. [4]