

3 The equation of a curve is $y = (x - 3)\sqrt{x + 1} + 3$. The following points lie on the curve. Non-exact values are rounded to 4 decimal places.

A (2, k) B (2.9, 2.8025) C (2.99, 2.9800) D (2.999, 2.9980) E (3, 3)

(a) Find k , giving your answer correct to 4 decimal places.

[1]

.....
.....
.....
.....
.....

(b) Find the gradient of AE , giving your answer correct to 4 decimal places.

[1]

.....
.....
.....
.....
.....
.....
.....
.....

The gradients of BE , CE and DE , rounded to 4 decimal places, are 1.9748, 1.9975 and 1.9997 respectively.

(c) State, giving a reason for your answer, what the values of the four gradients suggest about the gradient of the curve at the point E .

[2]

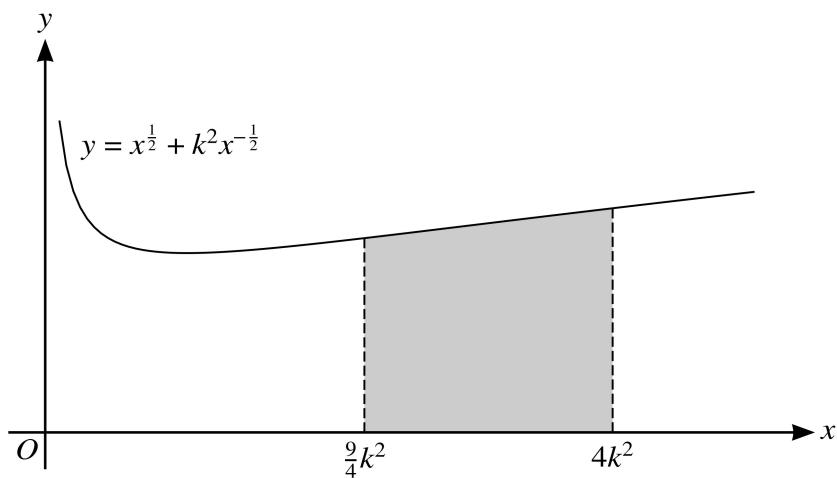
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

11 The gradient of a curve is given by $\frac{dy}{dx} = 6(3x - 5)^3 - kx^2$, where k is a constant. The curve has a stationary point at $(2, -3.5)$.

(a) Find the value of k .

[2]

11



The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a) Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

10 At the point $(4, -1)$ on a curve, the gradient of the curve is $-\frac{3}{2}$. It is given that $\frac{dy}{dx} = x^{-\frac{1}{2}} + k$, where k is a constant.

(c) Find the coordinates of the stationary point.

[3]

(d) Determine the nature of the stationary point.

[2]

9 The equation of a curve is $y = (3 - 2x)^3 + 24x$.

(a) Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. [4]

(b) Find the coordinates of each of the stationary points on the curve. [3]

(c) Determine the nature of each stationary point. [2]

9 The equation of a curve is $y = 3x + 1 - 4(3x + 1)^{\frac{1}{2}}$ for $x > -\frac{1}{3}$.

(a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. [3]

(b) Find the coordinates of the stationary point of the curve and determine its nature. [4]

10 The gradient of a curve at the point (x, y) is given by $\frac{dy}{dx} = 2(x + 3)^{\frac{1}{2}} - x$. The curve has a stationary point at $(a, 14)$, where a is a positive constant.

(a) Find the value of a .

[3]

(b) Determine the nature of the stationary point.

[3]

11 The equation of a curve is

$$y = k\sqrt{4x + 1} - x + 5,$$

where k is a positive constant.

(a) Find $\frac{dy}{dx}$. [2]

(b) Find the x -coordinate of the stationary point in terms of k . [2]

8 The equation of a curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$. The curve passes through the point (3, 5).

(b) Find the x -coordinate of the stationary point.

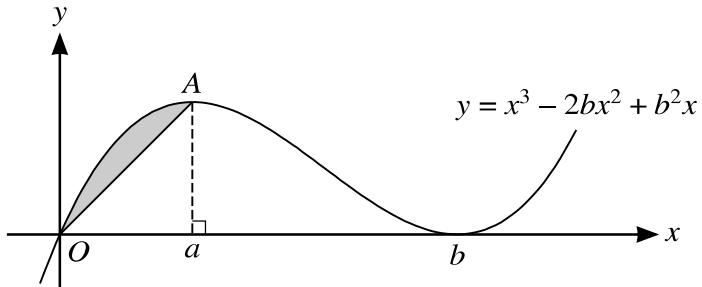
[2]

(c) State the set of values of x for which y increases as x increases.

[1]

.....
.....
.....
.....
.....

11



The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA , where A is the maximum point on the curve. The x -coordinate of A is a and the curve has a minimum point at $(b, 0)$, where a and b are positive constants.

(a) Show that $b = 3a$. [4]

11 It is given that a curve has equation $y = k(3x - k)^{-1} + 3x$, where k is a constant.

(a) Find, in terms of k , the values of x at which there is a stationary point.

[4]

The function f has a stationary value at $x = a$ and is defined by

$$f(x) = 4(3x - 4)^{-1} + 3x \quad \text{for } x \geq \frac{3}{2}.$$

(b) Find the value of a and determine the nature of the stationary value. [3]

(c) The function g is defined by $g(x) = -(3x + 1)^{-1} + 3x$ for $x \geq 0$.

Determine, making your reasoning clear, whether g is an increasing function, a decreasing function or neither. [2]