

- 4 A cyclist starts from rest at a point A and travels along a straight road AB , coming to rest at B . The displacement of the cyclist from A at time t s after the start is s m, where

$$s = 0.004(75t^2 - t^3).$$

- (a) Show that the distance AB is 250 m. [4]

- (b) Find the maximum velocity of the cyclist. [3]

- 6 A particle moves in a straight line AB . The velocity $v \text{ m s}^{-1}$ of the particle t s after leaving A is given by $v = k(t^2 - 10t + 21)$, where k is a constant. The displacement of the particle from A , in the direction towards B , is 2.85 m when $t = 3$ and is 2.4 m when $t = 6$.

- (a) Find the value of k . Hence find an expression, in terms of t , for the displacement of the particle from A . [7]

- (b) Find the displacement of the particle from A when its velocity is a minimum. [4]

- 6 A particle travels in a straight line PQ . The velocity of the particle t s after leaving P is $v \text{ m s}^{-1}$, where

$$v = 4.5 + 4t - 0.5t^2.$$

- (a) Find the velocity of the particle at the instant when its acceleration is zero.

[3]

The particle comes to instantaneous rest at Q .

- (b) Find the distance PQ . [6]

- 5 A particle moving in a straight line starts from rest at a point A and comes instantaneously to rest at a point B . The acceleration of the particle at time t s after leaving A is $a \text{ m s}^{-2}$, where

$$a = 6t^{\frac{1}{2}} - 2t.$$

- (a) Find the value of t at point B . [3]

- (b) Find the distance travelled from A to the point at which the acceleration of the particle is again zero. [5]

- 7 A particle P travels in a straight line, starting at rest from a point O . The acceleration of P at time t s after leaving O is denoted by $a \text{ m s}^{-2}$, where

$$\begin{aligned} a &= 0.3t^{\frac{1}{2}} && \text{for } 0 \leq t \leq 4, \\ a &= -kt^{-\frac{3}{2}} && \text{for } 4 < t \leq T, \end{aligned}$$

where k and T are constants.

- (a) Find the velocity of P at $t = 4$. [2]

- (b) It is given that there is no change in the velocity of P at $t = 4$ and that the velocity of P at $t = 16$ is 0.3 m s^{-1} .

Show that $k = 2.6$ and find an expression, in terms of t , for the velocity of P for $4 \leq t \leq T$. [4]

- (c) Given that P comes to instantaneous rest at $t = T$, find the exact value of T . [2]

- (d) Find the total distance travelled between $t = 0$ and $t = T$. [4]

- 3 A particle moves in a straight line starting from rest from a point O . The acceleration of the particle at time t s after leaving O is a m s $^{-2}$, where $a = 4t^{\frac{1}{2}}$.

- (a) Find the speed of the particle when $t = 9$. [2]

- (b) Find the time after leaving O at which the speed (in metres per second) and the distance travelled (in metres) are numerically equal. [3]

- 5 A particle P moves in a straight line. It starts at a point O on the line and at time t s after leaving O it has velocity v m s $^{-1}$, where $v = 4t^2 - 20t + 21$.

- (a) Find the values of t for which P is at instantaneous rest.

[2]

.....
.....
.....
.....
.....
.....
.....
.....
.....

- (b) Find the initial acceleration of P .

[2]

.....
.....
.....
.....
.....
.....
.....
.....
.....

- (c) Find the minimum velocity of P .

[2]

.....
.....
.....
.....
.....
.....
.....
.....
.....

- (d) Find the distance travelled by P during the time when its velocity is negative. [4]

- 6 A particle starts from a point O and moves in a straight line. The velocity $v \text{ ms}^{-1}$ of the particle at time $t \text{ s}$ after leaving O is given by

$$v = k(3t^2 - 2t^3),$$

where k is a constant.

- (a) Verify that the particle returns to O when $t = 2$.

[4]

- (b)** It is given that the acceleration of the particle is -13.5 m s^{-2} for the positive value of t at which $v = 0$.

Find k and hence find the total distance travelled in the first two seconds of motion.

[6]

- 6 A cyclist starts from rest at a fixed point O and moves in a straight line, before coming to rest k seconds later. The acceleration of the cyclist at time t s after leaving O is $a \text{ m s}^{-2}$, where $a = 2t^{-\frac{1}{2}} - \frac{3}{5}t^{\frac{1}{2}}$ for $0 < t \leq k$.

- (a) Find the value of k . [4]

- (b) Find the maximum speed of the cyclist. [3]

- (c) Find an expression for the displacement from O in terms of t . Hence find the total distance travelled by the cyclist from the time at which she reaches her maximum speed until she comes to rest. [4]

- 7 A particle moves in a straight line through the point O . The displacement of the particle from O at time t s is s m, where

$$s = t^2 - 3t + 2 \quad \text{for } 0 \leq t \leq 6,$$

$$s = \frac{24}{t} - \frac{t^2}{4} + 25 \quad \text{for } t \geq 6.$$

- (a) Find the value of t when the particle is instantaneously at rest during the first 6 seconds of its motion. [2]

At $t = 6$, the particle hits a barrier at a point P and rebounds.

- (b) Find the velocity with which the particle arrives at P and also the velocity with which the particle leaves P . [3]

- (c) Find the total distance travelled by the particle in the first 10 seconds of its motion. [5]

- 6 A particle P moves in a straight line starting from a point O and comes to rest 14 s later. At time t s after leaving O , the velocity v m s $^{-1}$ of P is given by

$$\begin{aligned} v &= pt^2 - qt & 0 \leq t \leq 6, \\ v &= 63 - 4.5t & 6 \leq t \leq 14, \end{aligned}$$

where p and q are positive constants.

The acceleration of P is zero when $t = 2$.

- (a) Given that there are no instantaneous changes in velocity, find p and q . [3]

- (b) Sketch the velocity-time graph. [3]

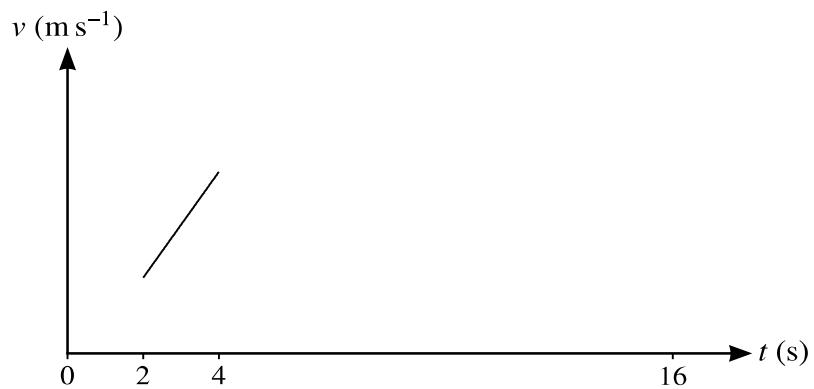
- (c) Find the total distance travelled by P during the 14 s.

[5]

- 7 A particle P moving in a straight line starts from rest at a point O and comes to rest 16 s later. At time t s after leaving O , the acceleration a m s $^{-2}$ of P is given by

$$a = 6 + 4t \quad 0 \leq t < 2,$$

$$a = 14 \quad 2 \leq t < 4,$$


$$a = 16 - 2t \quad 4 \leq t \leq 16.$$

There is no sudden change in velocity at any instant.

- (a) Find the values of t when the velocity of P is 55 m s^{-1} .

[5]

- (b) Complete the sketch of the velocity-time diagram. [2]

- (c) Find the distance travelled by P when it is decelerating. [3]