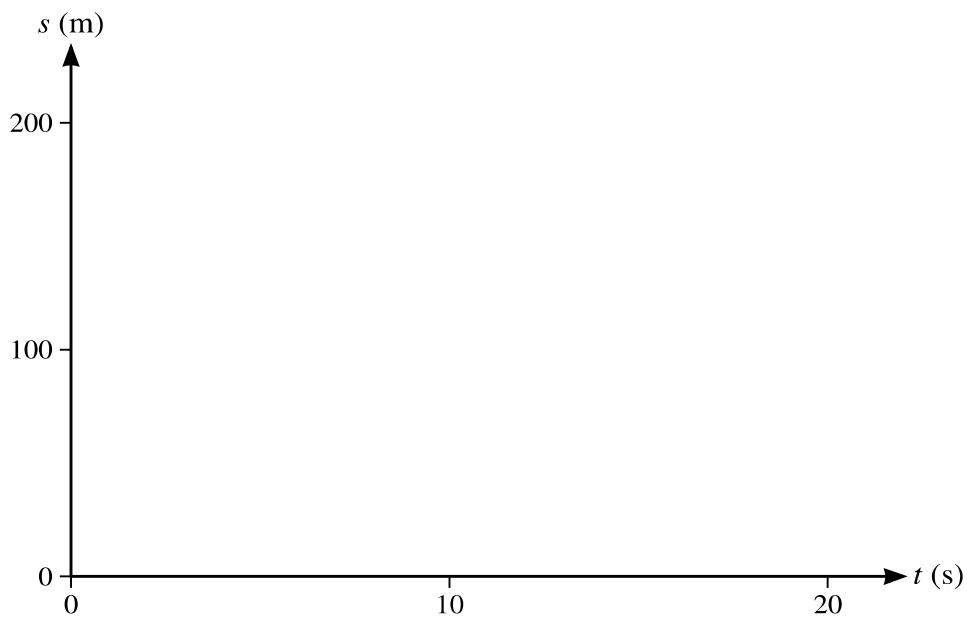


4 A cyclist travels along a straight road with constant acceleration. He passes through points A , B and C . The cyclist takes 2 seconds to travel along each of the sections AB and BC and passes through B with speed 4.5 m s^{-1} . The distance AB is $\frac{4}{5}$ of the distance BC .

(a) Find the acceleration of the cyclist.

[5]


(b) Find AC . [2]

4 A particle A , moving along a straight horizontal track with constant speed 8 m s^{-1} , passes a fixed point O . Four seconds later, another particle B passes O , moving along a parallel track in the same direction as A . Particle B has speed 20 m s^{-1} when it passes O and has a constant deceleration of 2 m s^{-2} . B comes to rest when it returns to O .

(a) Find expressions, in terms of t , for the displacement from O of each particle t seconds after B passes O . [3]

(b) Find the values of t when the particles are the same distance from O . [3]

(c) On the given axes, sketch the displacement-time graphs for both particles, for values of t from 0 to 20. [3]

4 A particle P travels in the positive direction along a straight line with constant acceleration. P travels a distance of 52 m during the 2nd second of its motion and a distance of 64 m during the 4th second of its motion.

(a) Find the initial speed and the acceleration of P .

[5]

(b) Find the distance travelled by P during the first 10 seconds of its motion. [2]