

4 (a) Expand $(1+a)^5$ in ascending powers of a up to and including the term in a^3 . [1]

(b) Hence expand $[1 + (x + x^2)]^5$ in ascending powers of x up to and including the term in x^3 , simplifying your answer. [3]

1 The coefficient of x^4 in the expansion of $(3 + x)^5$ is equal to the coefficient of x^2 in the expansion of $\left(2x + \frac{a}{x}\right)^6$.

Find the value of the positive constant a .

[4]

1 The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^5$ is 20.

Find the value of the constant k .

[4]

7 (a) Write down the first four terms of the expansion, in ascending powers of x , of $(a - x)^6$. [2]

(b) Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a - x)^6$ is -20 , find in exact form the possible values of the constant a . [5]

1 (a) Expand $\left(1 - \frac{1}{2x}\right)^2$. [1]

.....
.....
.....
.....

(b) Find the first four terms in the expansion, in ascending powers of x , of $(1 + 2x)^6$. [2]

(c) Hence find the coefficient of x in the expansion of $\left(1 - \frac{1}{2x}\right)^2 (1 + 2x)^6$. [2]

3 (a) Give the complete expansion of $\left(x + \frac{2}{x}\right)^5$. [2]

(b) In the expansion of $(a + bx^2) \left(x + \frac{2}{x}\right)^5$, the coefficient of x is zero and the coefficient of $\frac{1}{x}$ is 80.

Find the values of the constants a and b .

[4]

6 The coefficient of $\frac{1}{x}$ in the expansion of $\left(2x + \frac{a}{x^2}\right)^5$ is 720.

(a) Find the possible values of the constant a .

[3]

(b) Hence find the coefficient of $\frac{1}{x^7}$ in the expansion.

[2]

3 (a) Find the first three terms in ascending powers of x of the expansion of $(1 + 2x)^5$. [2]

.....
.....
.....
.....
.....
.....
.....

(b) Find the first three terms in ascending powers of x of the expansion of $(1 - 3x)^4$. [2]

.....
.....
.....
.....
.....
.....
.....

(c) Hence find the coefficient of x^2 in the expansion of $(1 + 2x)^5(1 - 3x)^4$. [2]

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

4 The coefficient of x^2 in the expansion of $\left(1 + \frac{2}{p}x\right)^5 + (1 + px)^6$ is 70.

Find the possible values of the constant p .

[6]

4 The coefficient of x in the expansion of $\left(4x + \frac{10}{x}\right)^3$ is p . The coefficient of $\frac{1}{x}$ in the expansion of $\left(2x + \frac{k}{x^2}\right)^5$ is q .

Given that $p = 6q$, find the possible values of k .

[5]

3 The coefficient of x^4 in the expansion of $\left(2x^2 + \frac{k^2}{x}\right)^5$ is a . The coefficient of x^2 in the expansion of $(2kx - 1)^4$ is b .

(a) Find a and b in terms of the constant k .

[3]

(b) Given that $a + b = 216$, find the possible values of k .

[3]

5 In the expansion of $(a + bx)^7$, where a and b are non-zero constants, the coefficients of x , x^2 and x^4 are the first, second and third terms respectively of a geometric progression.

Find the value of $\frac{a}{b}$.

[5]