

6 It is given that $\alpha = \cos^{-1}\left(\frac{8}{17}\right)$.

Find, without using the trigonometric functions on your calculator, the exact value of $\frac{1}{\sin \alpha} + \frac{1}{\tan \alpha}$. [5]

2 (a) Express the equation $3 \cos \theta = 8 \tan \theta$ as a quadratic equation in $\sin \theta$. [3]

(b) Hence find the acute angle, in degrees, for which $3 \cos \theta = 8 \tan \theta$. [2]

3 Solve the equation $\frac{\tan \theta + 2 \sin \theta}{\tan \theta - 2 \sin \theta} = 3$ for $0^\circ < \theta < 180^\circ$. [4]

3 Solve the equation $3 \tan^2 \theta + 1 = \frac{2}{\tan^2 \theta}$ for $0^\circ < \theta < 180^\circ$. [5]

3 (a) Find the set of values of k for which the equation $8x^2 + kx + 2 = 0$ has no real roots. [2]

(b) Solve the equation $8 \cos^2 \theta - 10 \cos \theta + 2 = 0$ for $0^\circ \leq \theta \leq 180^\circ$. [3]

7 (a) Show that $\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} \equiv \frac{2}{\sin \theta \cos \theta}$. [4]

(b) Hence solve the equation $\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{6}{\tan \theta}$ for $0^\circ < \theta < 180^\circ$. [4]

7 (a) Prove the identity $\frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \equiv \frac{2}{\cos \theta}$. [3]

(b) Hence solve the equation $\frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} = \frac{3}{\sin \theta}$, for $0 \leq \theta \leq 2\pi$. [3]

7 (a) Prove the identity $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta - \cos \theta} \equiv \frac{\tan^2 \theta + 1}{\tan^2 \theta - 1}$. [3]

(b) Hence find the exact solutions of the equation $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta - \cos \theta} = 2$ for $0 \leq \theta \leq \pi$. [4]

7 (a) Show that $\frac{\sin \theta + 2 \cos \theta}{\cos \theta - 2 \sin \theta} - \frac{\sin \theta - 2 \cos \theta}{\cos \theta + 2 \sin \theta} \equiv \frac{4}{5 \cos^2 \theta - 4}$. [4]

(b) Hence solve the equation $\frac{\sin \theta + 2 \cos \theta}{\cos \theta - 2 \sin \theta} - \frac{\sin \theta - 2 \cos \theta}{\cos \theta + 2 \sin \theta} = 5$ for $0^\circ < \theta < 180^\circ$. [3]

3 Solve, by factorising, the equation

$$6 \cos \theta \tan \theta - 3 \cos \theta + 4 \tan \theta - 2 = 0,$$

for $0^\circ \leq \theta \leq 180^\circ$.

[4]

7 (a) By first obtaining a quadratic equation in $\cos \theta$, solve the equation

$$\tan \theta \sin \theta = 1$$

for $0^\circ < \theta < 360^\circ$.

[5]

(b) Show that $\frac{\tan \theta}{\sin \theta} - \frac{\sin \theta}{\tan \theta} \equiv \tan \theta \sin \theta$. [3]

4 (a) Show that the equation

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

where k is a constant, may be expressed as

$$\frac{1 + \cos x}{1 - \cos x} = k. \quad [2]$$

Hence express $\cos x$ in terms of k .

[2]

(c) Hence solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x} = 4$ for $-\pi < x < \pi$.

[2]

5 (a) Solve the equation $6\sqrt{y} + \frac{2}{\sqrt{y}} - 7 = 0$. [4]

(b) Hence solve the equation $6\sqrt{\tan x} + \frac{2}{\sqrt{\tan x}} - 7 = 0$ for $0^\circ \leq x \leq 360^\circ$. [3]

11 The function f is given by $f(x) = 4\cos^4 x + \cos^2 x - k$ for $0 \leq x \leq 2\pi$, where k is a constant.

(a) Given that $k = 3$, find the exact solutions of the equation $f(x) = 0$.

[5]

(b) Use the quadratic formula to show that, when $k > 5$, the equation $f(x) = 0$ has no solutions. [5]

11 (a) Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \leq x \leq 180^\circ$. [4]

(b) Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solutions. [2]

(c) For the equation $3 \tan^2 x - 5 \tan x + k = 0$, state the value of k for which there are three solutions in the interval $0^\circ \leq x \leq 180^\circ$, and find these solutions. [3]