

1 The equation of a curve is such that $\frac{dy}{dx} = \frac{3}{x^4} + 32x^3$. It is given that the curve passes through the point $(\frac{1}{2}, 4)$.

Find the equation of the curve.

[4]

9 A curve has equation $y = f(x)$, and it is given that $f'(x) = 2x^2 - 7 - \frac{4}{x^2}$.

(a) Given that $f(1) = -\frac{1}{3}$, find $f(x)$.

[4]

8 The equation of a curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$. The curve passes through the point $(3, 5)$.

(a) Find the equation of the curve.

[4]

1 A curve with equation $y = f(x)$ is such that $f'(x) = 2x^{-\frac{1}{3}} - x^{\frac{1}{3}}$. It is given that $f(8) = 5$.

Find $f(x)$.

[4]

1 The equation of a curve is such that $\frac{dy}{dx} = \frac{4}{(x-3)^3}$ for $x > 3$. The curve passes through the point $(4, 5)$.

Find the equation of the curve.

[3]

4 A curve is such that $\frac{dy}{dx} = \frac{8}{(3x+2)^2}$. The curve passes through the point $(2, 5\frac{2}{3})$.

Find the equation of the curve.

[4]

2 The equation of a curve is such that $\frac{dy}{dx} = 12\left(\frac{1}{2}x - 1\right)^{-4}$. It is given that the curve passes through the point $P(6, 4)$.

(a) Find the equation of the tangent to the curve at P .

[2]

(b) Find the equation of the curve.

[4]

2 The equation of a curve is such that $\frac{dy}{dx} = \frac{1}{(x-3)^2} + x$. It is given that the curve passes through the point (2, 7).

Find the equation of the curve.

[4]

3 The equation of a curve is such that $\frac{dy}{dx} = 3(4x - 7)^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$. It is given that the curve passes through the point $(4, \frac{5}{2})$.

Find the equation of the curve.

[4]

10 The equation of a curve is such that $\frac{d^2y}{dx^2} = 6x^2 - \frac{4}{x^3}$. The curve has a stationary point at $(-1, \frac{9}{2})$.

(a) Determine the nature of the stationary point at $(-1, \frac{9}{2})$. [1]

.....
.....
.....
.....

(b) Find the equation of the curve. [5]