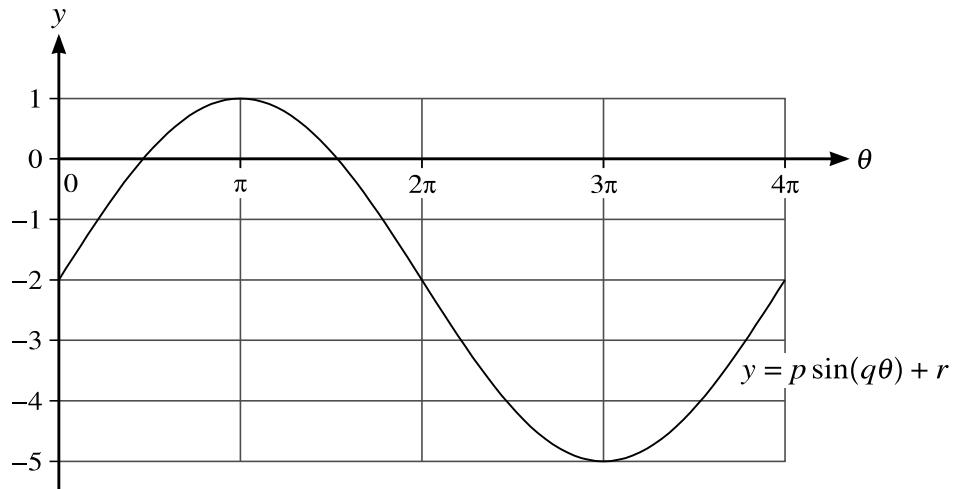


2



The diagram shows part of the curve with equation $y = p \sin(q\theta) + r$, where p , q and r are constants.

(a) State the value of p . [1]

.....
.....
.....
.....

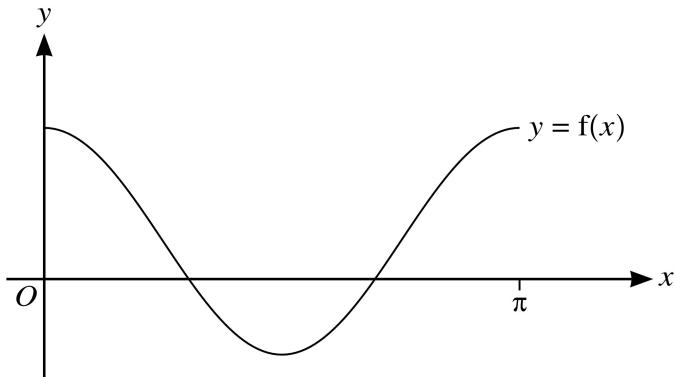
(b) State the value of q . [1]

.....
.....
.....
.....
.....
.....

(c) State the value of r . [1]

.....
.....
.....
.....
.....

4



The diagram shows the graph of $y = f(x)$, where $f(x) = \frac{3}{2} \cos 2x + \frac{1}{2}$ for $0 \leq x \leq \pi$.

(a) State the range of f .

[2]

.....

A function g is such that $g(x) = f(x) + k$, where k is a positive constant. The x -axis is a tangent to the curve $y = g(x)$.

(b) State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ onto $y = g(x)$.

[2]

.....

.....

.....

.....

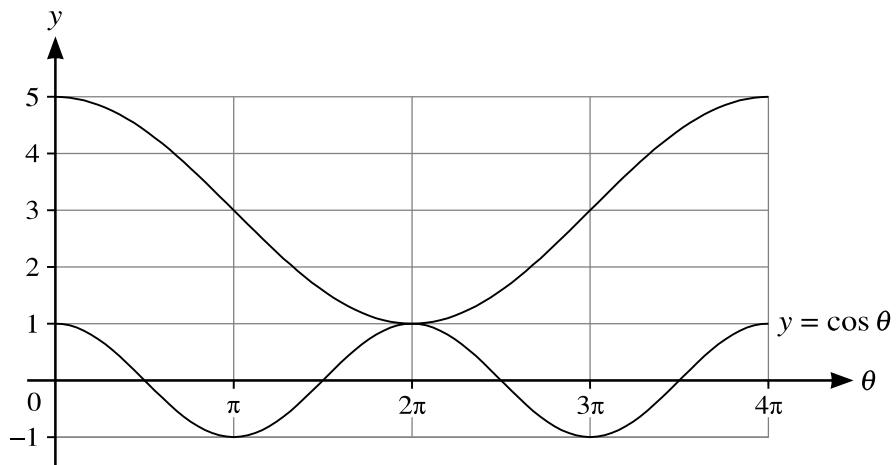
(c) State the equation of the curve which is the reflection of $y = f(x)$ in the x -axis. Give your answer in the form $y = a \cos 2x + b$, where a and b are constants.

[1]

.....

.....

.....



In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

Find, in terms of a cosine function, the equation of the upper curve.

[3]

7 A curve has equation $y = 2 + 3 \sin \frac{1}{2}x$ for $0 \leq x \leq 4\pi$.

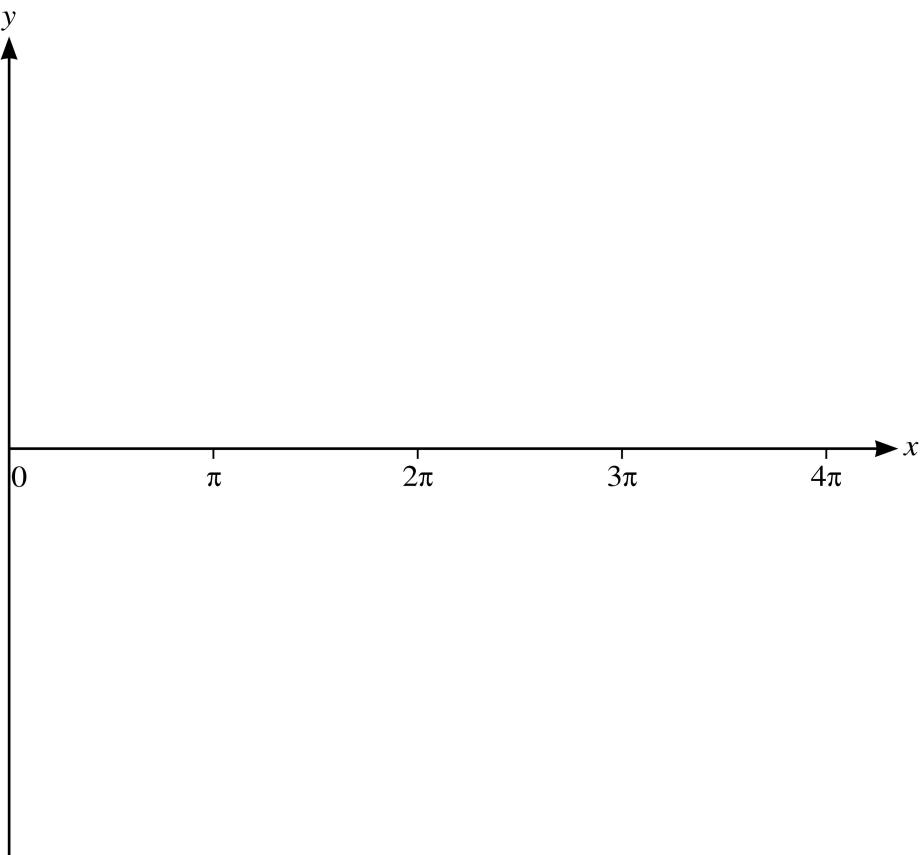
(a) State greatest and least values of y .

[2]

.....
.....
.....
.....

(b) Sketch the curve.

[2]



(c) State the number of solutions of the equation

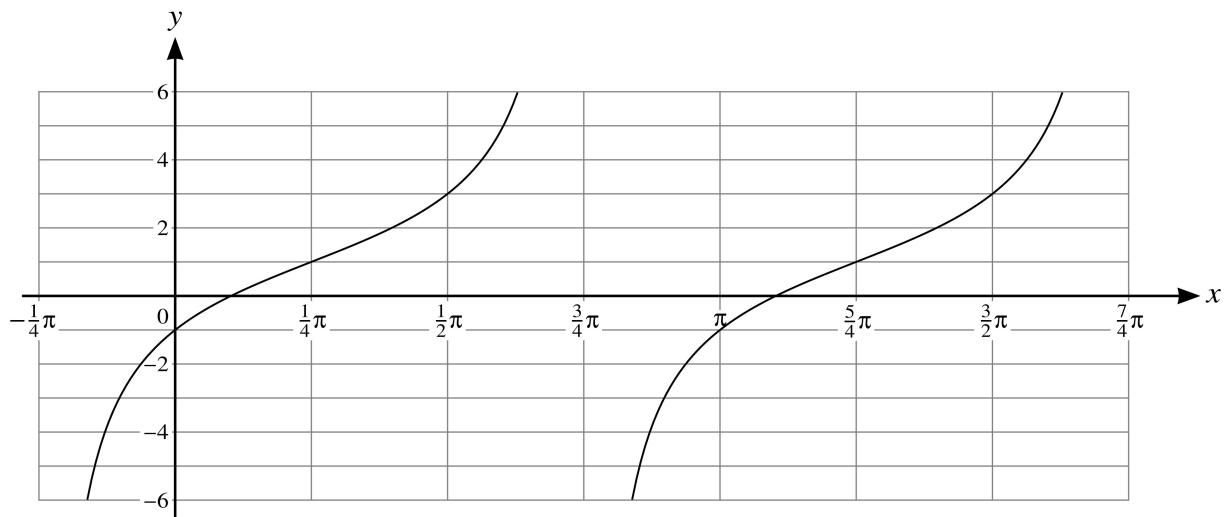
$$2 + 3 \sin \frac{1}{2}x = 5 - 2x$$

for $0 \leq x \leq 4\pi$.

[1]

.....
.....
.....
.....

4



The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .

[3]

8 (a) The curve $y = \sin x$ is transformed to the curve $y = 4 \sin(\frac{1}{2}x - 30^\circ)$.

Describe fully a sequence of transformations that have been combined, making clear the order in which the transformations are applied. [5]

9 Functions f and g are such that

$$f(x) = 2 - 3 \sin 2x \quad \text{for } 0 \leq x \leq \pi,$$

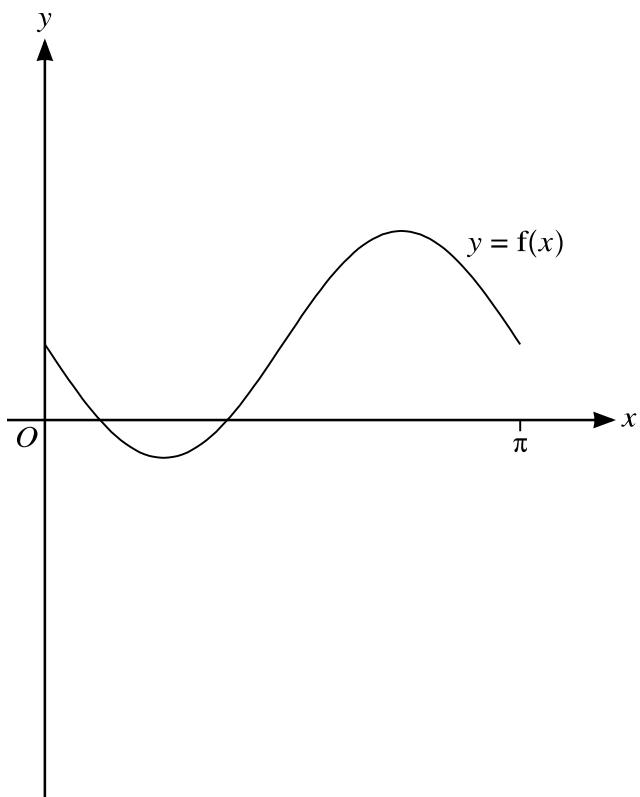
$$g(x) = -2f(x) \quad \text{for } 0 \leq x \leq \pi.$$

(a) State the ranges of f and g .

[3]

.....

The diagram below shows the graph of $y = f(x)$.



(b) Sketch, on this diagram, the graph of $y = g(x)$.

[2]

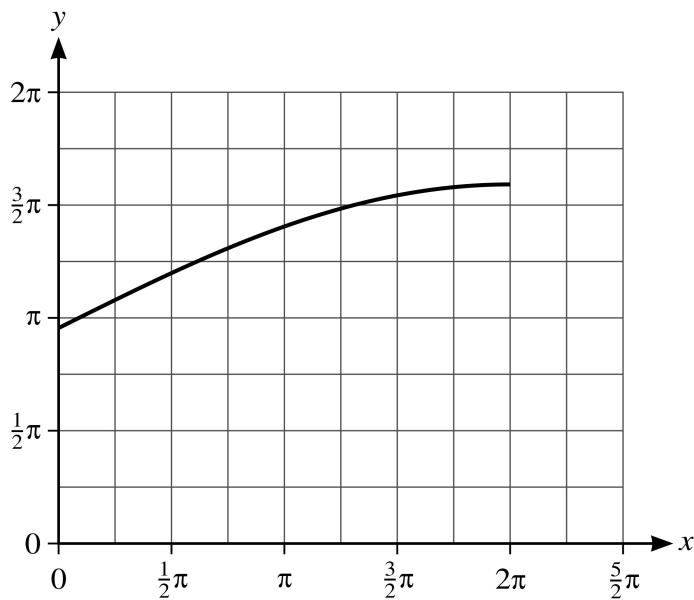
The function h is such that

$$h(x) = g(x + \pi) \quad \text{for } -\pi \leq x \leq 0.$$

(c) Describe fully a sequence of transformations that maps the curve $y = f(x)$ on to $y = h(x)$.

[3]

.....



The diagram shows the graph of $y = f(x)$ where the function f is defined by

$$f(x) = 3 + 2 \sin \frac{1}{4}x \text{ for } 0 \leq x \leq 2\pi.$$

(a) On the diagram above, sketch the graph of $y = f^{-1}(x)$. [2]

(b) Find an expression for $f^{-1}(x)$. [2]

.....

.....

.....

.....

.....

.....

.....

.....

.....

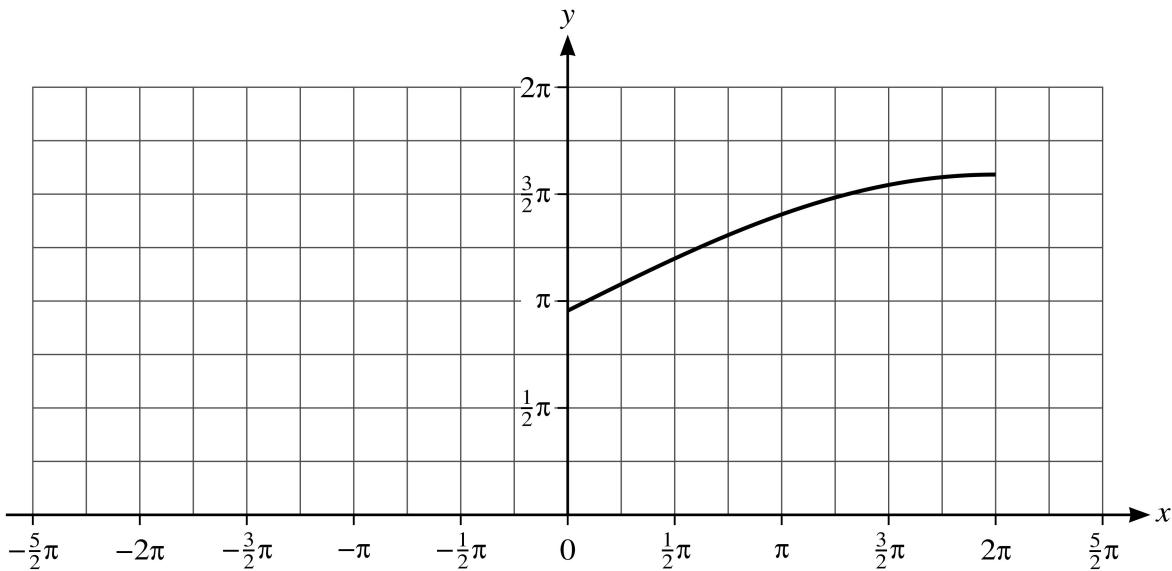
.....

.....

.....

.....

(c)



The diagram above shows part of the graph of the function $g(x) = 3 + 2 \sin \frac{1}{4}x$ for $-2\pi \leq x \leq 2\pi$.

Complete the sketch of the graph of $g(x)$ on the diagram above and hence explain whether the function g has an inverse. [2]

.....

(d) Describe fully a sequence of three transformations which can be combined to transform the graph of $y = \sin x$ for $0 \leq x \leq \frac{1}{2}\pi$ to the graph of $y = f(x)$, making clear the order in which the transformations are applied. [6]

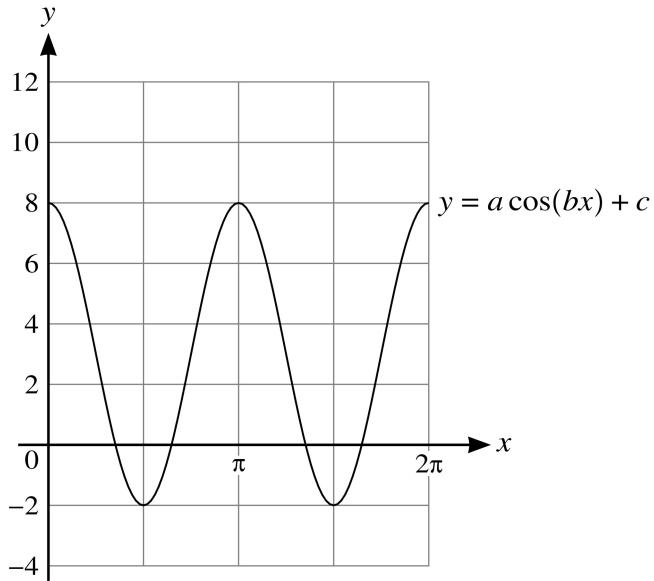
.....

.....

.....

.....

5



The diagram shows part of the graph of $y = a \cos(bx) + c$.

(a) Find the values of the positive integers a , b and c . [3]

(b) For these values of a , b and c , use the given diagram to determine the number of solutions in the interval $0 \leq x \leq 2\pi$ for each of the following equations.

(i) $a \cos(bx) + c = \frac{6}{\pi}x$ [1]

.....

.....

(ii) $a \cos(bx) + c = 6 - \frac{6}{\pi}x$ [1]

11 A curve has equation $y = 3 \cos 2x + 2$ for $0 \leq x \leq \pi$.

(a) State the greatest and least values of y .

[2]

.....
.....
.....
.....

(b) Sketch the graph of $y = 3 \cos 2x + 2$ for $0 \leq x \leq \pi$.

[2]

(c) By considering the straight line $y = kx$, where k is a constant, state the number of solutions of the equation $3 \cos 2x + 2 = kx$ for $0 \leq x \leq \pi$ in each of the following cases.

(i) $k = -3$

[1]

.....
.....

(ii) $k = 1$

[1]

.....
.....

(iii) $k = 3$

[1]

.....
.....

Functions f , g and h are defined for $x \in \mathbb{R}$ by

$$\begin{aligned}f(x) &= 3 \cos 2x + 2, \\g(x) &= f(2x) + 4, \\h(x) &= 2f\left(x + \frac{1}{2}\pi\right).\end{aligned}$$

(d) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]

(e) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]