

3 The function f is defined as follows:

$$f(x) = \frac{x+3}{x-1} \text{ for } x > 1.$$

(a) Find the value of $ff(5)$.

[2]

.....
.....
.....
.....
.....

(b) Find an expression for $f^{-1}(x)$.

[3]

6 Functions f and g are defined for $x \in \mathbb{R}$ by

$$\begin{aligned}f: x &\mapsto \frac{1}{2}x - a, \\g: x &\mapsto 3x + b,\end{aligned}$$

where a and b are constants.

(a) Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .

[4]

(b) Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and d are constants. [2]

[2]

6 The function f is defined by $f(x) = 2x^2 - 16x + 23$ for $x < 3$.

(a) Express $f(x)$ in the form $2(x + a)^2 + b$.

[2]

(b) Find the range of f .

[1]

(c) Find an expression for $f^{-1}(x)$. [3]

The function g is defined by $g(x) = 2x + 4$ for $x < -1$.

(d) Find and simplify an expression for $fg(x)$. [2]

5 Functions f and g are defined by

$$f(x) = 4x - 2, \quad \text{for } x \in \mathbb{R},$$

$$g(x) = \frac{4}{x+1}, \quad \text{for } x \in \mathbb{R}, \ x \neq -1.$$

(a) Find the value of $fg(7)$.

[1]

(b) Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.

[5]

9 Functions f , g and h are defined as follows:

$$f: x \mapsto x - 4x^{\frac{1}{2}} + 1 \quad \text{for } x \geq 0,$$

$g : x \mapsto mx^2 + n$ for $x \geq -2$, where m and n are constants,

$$h : x \mapsto x^{\frac{1}{2}} - 2 \quad \text{for } x \geq 0.$$

(a) Solve the equation $f(x) = 0$, giving your solutions in the form $x = a + b\sqrt{c}$, where a , b and c are integers. [4]

(b) Given that $f(x) \equiv gh(x)$, find the values of m and n .

[4]

6 The function f is defined as follows:

$$f(x) = \frac{x^2 - 4}{x^2 + 4} \quad \text{for } x > 2.$$

(a) Find an expression for $f^{-1}(x)$. [3]

(b) Show that $1 - \frac{8}{x^2 + 4}$ can be expressed as $\frac{x^2 - 4}{x^2 + 4}$ and hence state the range of f. [4]

(c) Explain why the composite function ff cannot be formed. [1]

8 The function f is defined by $f(x) = 2 - \frac{3}{4x-p}$ for $x > \frac{p}{4}$, where p is a constant.

(b) Express $f^{-1}(x)$ in the form $\frac{p}{a} - \frac{b}{cx-d}$, where a, b, c and d are integers. [4]

(c) Hence state the value of p for which $f^{-1}(x) \equiv f(x)$. [1]

.....
.....
.....
.....

11 The functions f and g are defined by

$$\begin{aligned} f(x) &= x^2 + 3 & \text{for } x > 0, \\ g(x) &= 2x + 1 & \text{for } x > -\frac{1}{2}. \end{aligned}$$

(a) Find an expression for $fg(x)$.

[1]

.....
.....
.....
.....
.....

(b) Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.

[4]

(c) Solve the equation $fg(x) - 3 = gf(x)$. [4]

9 Functions f and g are defined by

$$f(x) = x + \frac{1}{x} \quad \text{for } x > 0,$$
$$g(x) = ax + 1 \quad \text{for } x \in \mathbb{R},$$

where a is a constant.

(a) Find an expression for $gf(x)$.

[1]

.....
.....
.....
.....
.....
.....

(b) Given that $gf(2) = 11$, find the value of a .

[2]

.....
.....
.....
.....
.....
.....
.....
.....

(c) Given that the graph of $y = f(x)$ has a minimum point when $x = 1$, explain whether or not f has an inverse.

[1]

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

It is given instead that $a = 5$.

(d) Find and simplify an expression for $g^{-1}f(x)$. [3]

(e) Explain why the composite function fg cannot be formed. [1]

9 (a) Express $2x^2 + 12x + 11$ in the form $2(x + a)^2 + b$, where a and b are constants. [2]

The function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \leq -4$.

(b) Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [3]

The function g is defined by $g(x) = 2x - 3$ for $x \leq k$.

(c) For the case where $k = -1$, solve the equation $fg(x) = 193$. [2]

(d) State the largest value of k possible for the composition fg to be defined. [1]

.....
.....
.....
.....
.....

9 The function f is defined by $f(x) = -3x^2 + 2$ for $x \leq -1$.

(a) State the range of f .

[1]

.....
.....
.....

(b) Find an expression for $f^{-1}(x)$.

[3]

The function g is defined by $g(x) = -x^2 - 1$ for $x \leq -1$.

(c) Solve the equation $fg(x) - gf(x) + 8 = 0$. [5]

9 The functions f and g are defined by

$$f(x) = x^2 - 4x + 3 \quad \text{for } x > c, \text{ where } c \text{ is a constant,}$$

$$g(x) = \frac{1}{x+1} \quad \text{for } x > -1.$$

(a) Express $f(x)$ in the form $(x - a)^2 + b$.

[2]

It is given that f is a one-one function.

(b) State the smallest possible value of c .

[1]

It is now given that $c = 5$.

(c) Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [3]

(d) Find an expression for $gf(x)$ and state the range of gf . [3]