

2 A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation $y = 4x + c$, where c is a constant. Find the set of values of c for which the curve and line intersect at two distinct points. [5]

2 A curve has equation $y = kx^2 + 2x - k$ and a line has equation $y = kx - 2$, where k is a constant.

Find the set of values of k for which the curve and line do not intersect.

[5]

9 The equation of a circle is $x^2 + y^2 + 6x - 2y - 26 = 0$.

(b) Find the set of values of the constant k for which the line with equation $y = kx - 5$ intersects the circle at two distinct points. [6]

3 A line with equation $y = mx - 6$ is a tangent to the curve with equation $y = x^2 - 4x + 3$.

Find the possible values of the constant m , and the corresponding coordinates of the points at which the line touches the curve. [6]

5 The equation of a line is $y = mx + c$, where m and c are constants, and the equation of a curve is $xy = 16$.

(a) Given that the line is a tangent to the curve, express m in terms of c . [3]

(b) Given instead that $m = -4$, find the set of values of c for which the line intersects the curve at two distinct points. [3]

1 A line has equation $y = 3x - 2k$ and a curve has equation $y = x^2 - kx + 2$, where k is a constant.

Show that the line and the curve meet for all values of k .

[4]

5 The equation of a curve is $y = 4x^2 - kx + \frac{1}{2}k^2$ and the equation of a line is $y = x - a$, where k and a are constants.

(a) Given that the curve and the line intersect at the points with x -coordinates 0 and $\frac{3}{4}$, find the values of k and a . [4]

(b) Given instead that $a = -\frac{7}{2}$, find the values of k for which the line is a tangent to the curve. [5]

11 The point P lies on the line with equation $y = mx + c$, where m and c are positive constants. A curve has equation $y = -\frac{m}{x}$. There is a single point P on the curve such that the straight line is a tangent to the curve at P .

(a) Find the coordinates of P , giving the y-coordinate in terms of m .

[6]

The normal to the curve at P intersects the curve again at the point Q .

(b) Find the coordinates of Q in terms of m .

[4]